
IBM Visual Insights

User Guide
Version 1 Release 1

IBM

IBM Visual Insights

User Guide
Version 1 Release 1

IBM

ii User Guide

Note

Before using this information and the product it supports, read the information in
“Notices” on page 25.

© Copyright IBM Corp. 2017 iii

iv User Guide

First edition (September 2017)

© Copyright IBM Corp. 2017 v

vi User Guide

Contents

Chapter 1. Product overview 1
Roles 1
How is data backed up and restored? 1
What's new in this release 2
Accessibility features 2

Chapter 2. Creating edge systems . . . 3
Edge system requirements 3
Installing NVIDIA GPU packages 3
Installing Caffe 4
Troubleshooting the Caffe installation 5
Installing Open CV 5
Installing object detection libraries 6
Configuring the image server 8
Configuring the model store 8
Registering the edge to the center application . . . 8

Chapter 3. Creating and using models 11
Structure of compressed image files 11

Adding historical images for image groups 12
Creating model requests 13
Trained models 13

Structure of model files 13
Validated models 19
Distributing trained models to edges 19
Retraining models 20

Chapter 4. Checking inspection results 21
Images 21
Filtering defects 21
Checking defects 21

Chapter 5. KPI dashboard 23

© Copyright IBM Corp. 2017 vii

viii User Guide

Chapter 1. Product overview

IBM® Visual Insights is a manufacturing quality monitoring and alerting solution
that can take in images of in-process and finished products and assemblies, and
classify them into defect categories.

Roles
To understand Visual Insights, it is helpful to understand how the different roles
interact with the product.

Table 1. Visual Insights roles

Role Description

Model Manager Manages defect types and models, uploads
image sets for specific defect types, creates
model training requests for the Data
Scientist, and distributes executable models
to edges.

Data Scientist Trains models based on image sets and
defect types created by the Model Manager.
The training of models is performed outside
Visual Insights. It is recommended that the
Data Scientist use the NVIDIA Deep
Learning GPU Training System (DIGITS) to
train models.

Inspector Verifies the inspection results that are
produced by the product, changes defect
types if necessary, marks unknown defect
types and passes them to the Inspector
Supervisor for further evaluation.

Inspector Supervisor Double-checks the Inspector's inspection
results. Reviews and classifies unknown
defect types. Reviews the KPI dashboard,
which includes total defects, defect rate,
overkill and escaping defect rates.

How is data backed up and restored?
IBM Open Platform redundancy is used to protect customer data in a big data
environment. In addition, Tivoli® Storage Manager is used to back up data in the
production environment, which includes Linux files. Linux files include customer
uploaded files and middleware/application configuration/log files.

The following table shows the backup schedule for various aspects of the solution.

Table 2. Backup schedule for solution data

Data Backup type Frequency
Time (Central
Time)

Retention
period

Files Full Bi-weekly 00:00 - 03:00 on
the 1st and 16th
day of each
month

5 weeks

© Copyright IBM Corp. 2017 1

Table 2. Backup schedule for solution data (continued)

Data Backup type Frequency
Time (Central
Time)

Retention
period

Files Incremental Twice daily 00:00 - 03:00 and
12:00 - 15:00

14 days

During the backup window, the solution is accessible. However, performance may
be impacted.

In the event of a system failure that causes data damage or loss, IBM will help to
restore the data to the recovery time points, according to its backup policy.

What's new in this release
The following new features are available in IBM Visual Insights.

New Features and Enhancements

v You can now use image groups to represent the same type of images by
using one or more compressed image files.

v Added support for multiple model versions that share the same image
groups, but use different image files to train the model.

v The model retrain process was added. You can automatically or
manually retrain a new model version by using different image files.

v Added support for model validation. The validation process calculates
and shows a model accuracy report based on validation image files.

v You can now use defect boxes and defect types on an image to mark the
defect location for the inspector.

v You can now show multiple defect locations on one image. You can now
add, adjust, and delete defect boxes on an image.

v Updated the KPI dashboard to include defect per unit and defect rate for
the inspector supervisor.

v Added support for the object detection model to detect multiple defects
in one image with the CNN model.

Accessibility features
Accessibility features help users who have a physical disability, such as restricted
mobility or limited vision, to use information technology products.

For information about the commitment that IBM has to accessibility, see the IBM
Accessibility Center (www.ibm.com/able).

HTML documentation has accessibility features. PDF documents are supplemental
and, as such, include no added accessibility features.

2 User Guide

http://www.ibm.com/able
http://www.ibm.com/able

Chapter 2. Creating edge systems

Visual Insights consists of the center application and the edges. Edges are Linux
systems that are used to perform runtime defect detection.

Edge systems use the Caffe deep-learning framework. Caffe is a dedicated artificial
neural network (ANN) training environment. Deep learning requires significant
processing resources. Deep learning can be performed efficiently by using a
graphics processing unit (GPU). Although most deep learning frameworks also
support CPU processing, GPU processing provides reasonable performance for
production environments.

Edge system requirements
Before creating an edge system, ensure that your system meets the requirements.
v Ubuntu 16.04
v 4-core processor
v 64GB memory
v 2TB hard disk drive
v One or more NVIDIA GPU cards

Installing NVIDIA GPU packages
To enable GPU processing, you must install the required NVIDIA GPU packages.

Procedure
1. Download and install the drivers for your NVIDIA GPU. The NVIDIA driver

list for Ubuntu is available at the following link: Binary Driver How to -
Nvidia.

2. Download the NVIDIA CUDA 8.0 toolkit from the following link: CUDA 8.0
downloads On the download website, choose Linux x86_64 Ubuntu 16.04 deb
(network) as the target platform. A cuda-repo-ubuntu1604_8.0.61-1_amd64.deb
installation file is downloaded.

3. Install the CUDA file on the target server using the following commands:
sudo dpkg -i cuda-repo-ubuntu1604_8.0.61-1_amd64.deb
sudo apt-get update
sudo apt-get install cuda

4. Download the NVIDIA CUDA Deep Neural Network library CUDNN-v5.1
from the following link: NVIDIA cuDNN. You must register before
downloading.

5. Unpack the downloaded file cudnn-8.0-linux-x64-v5.1.tgz to the cuda
installation directory using the following command:
sudo tar -xvf cudnn-8.0-linux-x64-v5.1.tgz -C /usr/local

6. Set the environment variable using the following command:
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
Also add this command to the ~/.bashrc script.

7. Install the NVIDIA NCCL package using the following commands:
git clone https://github.com/NVIDIA/nccl.git
cd nccl
sudo make install -j4

© Copyright IBM Corp. 2017 3

https://help.ubuntu.com/community/BinaryDriverHowto/Nvidia
https://help.ubuntu.com/community/BinaryDriverHowto/Nvidia
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cudnn

Installing Caffe
Before using an edge, you must install the Caffe deep-learning framework and
related packages. Caffe is used for model training and defect classification.

Procedure
1. Install the packages that are required for Caffe by using the following

commands:
sudo apt-get update
sudo apt-get upgrade
sudo apt-get install -y build-essential cmake git pkg-config
sudo apt-get install -y libprotobuf-dev libleveldb-dev libsnappy-dev
libhdf5-serial-dev protobuf-compiler
sudo apt-get install -y libatlas-base-dev libjasper-dev
sudo apt-get install -y --no-install-recommends libboost-all-dev
sudo apt-get install -y libgflags-dev libgoogle-glog-dev liblmdb-dev
sudo apt-get install -y python-pip
sudo apt-get install -y python-dev
sudo apt-get install -y python-numpy python-scipy
sudo apt-get install -y libopencv-dev

2. Download the Caffe source code by using the following command:
wget https://github.com/BVLC/caffe/archive/rc5.zip

3. Unpack the package and enter the package directory by using the following
commands:
unzip rc5.zip
cd ./caffe-rc5

4. Make a copy of the make configuration file by using the following command:
cp Makefile.config.example Makefile.config

5. Add the following variables in the Makefile.config file:
USE_CUDNN := 1
CUDA_DIR := /usr/local/cuda-8.0
PYTHON_INCLUDE := /usr/include/python2.7 \
/usr/lib/python2.7/dist-packages/numpy/core/include
PYTHON_LIB := /usr/lib/x86_64-linux-gnu
WITH_PYTHON_LAYER := 1
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include
/usr/include/hdf5/serial
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib
/usr/lib/x86_64-linux-gnu /usr/lib/x86_64-linux-gnu/hdf5/serial

6. In the caffe-rc5 directory, run the following command:
find . -type f -exec sed -i -e 's^"hdf5.h"^"hdf5/serial/hdf5.h"^g' -e
's^"hdf5_hl.h"^"hdf5/serial/hdf5_hl.h"^g' '{}' \;

7. Run the following commands:
cd /usr/lib/x86_64-linux-gnu
sudo ln -s libhdf5_serial.so.10.1.0 libhdf5.so
sudo ln -s libhdf5_serial_hl.so.10.0.2 libhdf5_hl.so

8. Install the required Python packages in the caffe-rc5/python directory by
using the following commands:
cd {caffe-installation-path}/caffe-rc5/python
for req in $(cat requirements.txt); do sudo -H pip install $req
--upgrade; done
where {caffe-installation-path} is the Caffe deployment path.

4 User Guide

9. Open the makefile in the {caffe-installation-path} directory and change the
parameter NVCCFLAGS to the following setting:
NVCCFLAGS += -D_FORCE_INLINES -ccbin=$(CXX) -Xcompiler -fPIC
$(COMMON_FLAGS)

10. In the main Caffe directory caffe-rc5, begin the Caffe build and installation
by using the following commands:
make all
make test
make runtest
make pycaffe
make distribute

11. Add the following line to the ~/.bashrc script:
export PYTHONPATH="/usr/lib/python2.7:{caffe-installation-path}/caffe-
rc5/python:$PYTHONPATH"
where {caffe-installation-path} is the Caffe deployment path.

Troubleshooting the Caffe installation
If an error message displays in the log when you begin the Caffe build and
installation, you can take steps to try to resolve the problem.

Symptoms

When you began the Caffe build and installation, the following message displays:
1. In file included from ./include/caffe/util/device_alternate.hpp:40:0,
2. from ./include/caffe/common.hpp:19,
3. from src/caffe/common.cpp:7:
4. ./include/caffe/util/cudnn.hpp: In function 'void caffe::cudnn::createPoolingDesc(cudnnPoolingStruct**,
caffe::PoolingParameter_PoolMethod, cudnnPoolingMode_t*, int, int, int, int, int, int)':
5. ./include/caffe/util/cudnn.hpp:127:41: error: too few arguments to function 'cudnnStatus_t
cudnnSetPooling2dDescriptor(cudnnPoolingDescriptor_t, cudnnPoolingMode_t, cudnnNanPropagation_t, int,
int, int, int, int, int)'
6. pad_h, pad_w, stride_h, stride_w));
7. ^
8. ./include/caffe/util/cudnn.hpp:15:28: note: in definition of macro 'CUDNN_CHECK'
9. cudnnStatus_t status = condition; \
10. ^
11. In file included from ./include/caffe/util/cudnn.hpp:5:0,
12. from ./include/caffe/util/device_alternate.hpp:40,
13. from ./include/caffe/common.hpp:19,
14. from src/caffe/common.cpp:7:
15. /usr/local/cuda-7.5//include/cudnn.h:803:27: note: declared here
16. cudnnStatus_t CUDNNWINAPI cudnnSetPooling2dDescriptor(
17. ^
18. make: *** [.build_release/src/caffe/common.o] Error 1
19.

Resolving the problem

To fix the error, refer to the following steps:
1. In the /include/caffe/util/cudnn.hpp directory, replace the cudnn.hpp file with

the newest cudnn.hpp file that is in the Caffe repository on GitHub.
2. In the /src/caffe/layers folder, replace all of the cudnn files that are in the

/src/caffe/layers folder with the newest cudnn files that are in the Caffe
repository on GitHub.

Installing Open CV
Before using an edge, you must install the Open Source Computer Vision
(OpenCV) library.

Chapter 2. Creating edge systems 5

Procedure
1. Get the OpenCV source code from Github:

wget https://github.com/opencv/opencv/archive/3.2.0.zip

2. Unpack the downloaded package and change to the package directory:
unzip 3.2.0.zip
cd opencv-3.2.0

3. Create a building subdirectory and change to the directory:
mkdir build
cd build

4. Prepare and generate the building configuration:
cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local -D
WITH_TBB=ON -D WITH_V4L=ON ..

5. Compile and build the package:
make –j $(nproc)

6. Install the package:
sudo make install

7. Register the libraries and modules to the system:
sudo /bin/bash -c 'echo "/usr/local/lib" > /etc/ld.so.conf.d/
opencv.conf'
sudo ldconfig

8. If required, uninstall the old opencv version to avoid version collision:
sudo apt-get autoremove libopencv-dev

Installing object detection libraries
You install an object detection library so that you can run the object detection
model on an edge.

About this task

IBM Visual Insights supports the following object detection libraries: YOLO (you
only look once), Faster R-CNN, and SSD (Single Shot MultiBox Detector).

Procedure
1. Install the related Python packages by using the following commands:

sudo apt-get install python-numpy
sudo apt-get install python-scipy
pip install cython
pip install eaydict
pip install shutil
pip install cPickle
pip install uuid
pip install multiprocessing
pip install xml

2. Install one of the following libraries:

6 User Guide

Library Installation Instructions

YOLO version 2
library

1. Run the following command to get the YOLO source code:
git clone --recursive http://github.com/pjreddie/
darknet.git

2. Edit the Makefile file by enabling the GPU and CUDNN parameters,
and select the correct GPU ARCH parameter according to your
machine configuration.

3. Run the following command to compile YOLO:
make

Faster-RCNN
Python library

1. Run the following command to get the Faster R-CNN source
code:
git clone --recursive http://github.com/rbgirshick/py-
faster-rcnn.git

2. In the pv-faster-rcnn directory, in the lib folder, run the
following command to Compile Cython:
make

3. Compile Caffe and pycaffe inside the py-faster-rcnn folder. You
must compile Caffe by using the Python layer.

SSD library 1. Run the following command to get the SSD source code:
git clone --recursive https://github.com/weiliu89/caffe.git

2. Edit the Makefile file and change the CUDA_ARCH, BLAS, and
PYTHON_INCLUDE parameters according to your machine
configuration.

3. Compile the code by using following command:
make -j8

4. Compile the Python layer by using the following command:
make py

5. Compile the test by using the following command:
make test -j8

3. Add the following environment variables at the user level: YOLO_HOME,
FRCNN_HOME, and SSD_HOME. The following text is an example of adding
environment variables: YOLO_HOME=/home/user/darknet/, FRCNN_HOME=/home/
user/py-faster-rcnn/.

4. Optional: Manually deploy the object detection library.
a. Unpackage the object detection package.
b. Add the yolo/detectorobj.c file to the darknet/examples folder.
c. Edit the darknet/Makefile file and indicate that EXECOBJA=detectorobj.o.

The following code is an example of the code in the Makefile file:
EXECOBJA=detectorobj.o captcha.o lsd.o super.o voxel.o art.o tag.o
cifar.o go.o rnn.o rnn_vid.o compare.o segmenter.o regressor.o
classifier.o coco.o dice.o yolo.o detector.o writing.o nightmare.o
swag.o darknet.o

d. In the Makefile file, add $(EXECOBJ) for the $(SLIB) and $(ALIB) objects.
The following code is an example of the code in the Makefile file:
$(ALIB): $(EXECOBJ) $(OBJS)
$(AR) $(ARFLAGS) $@ $^

$(SLIB): $(EXECOBJ) $(OBJS)
$(CC) $(CFLAGS) -shared $^ -o $@ $(LDFLAGS)

e. Run the following command:
make

f. Copy the iotmyolo.py file and add it to YOLO_HOME directory.

Chapter 2. Creating edge systems 7

Configuring the image server
You configure the image server on an edge machine so that the machine can store
images that are captured by an industrial camera. The image server is monitored
by the edge controller. When a new image is added, it is scored and the inspection
result is sent to the center application so that an inspector can evaluate the image
and the inspection results.

Before you begin

Add the following line to your export file:
/imageserver "IP address"(rw,sync,no_root_squash,no_all_squash). For
example, you would add the following line to the file:
/imageserver 10.173.0.0/29 (rw,sync,no_root_squash,no_all_squash).

Procedure
1. Install and start the nfs service by using the following command:

#>apt-get install nfs-kernel-server

2. Export the image server folder with the following commands:
#>mkdir /imageserver
#vi /etc/exports
#>service nfs-server restart

Configuring the model store
You must configure the model store on the edge machine. The model store is a
repository for executable models that are distributed from the center application.

Before you begin

Add the following line to your export file:
/modelstore "IP address"(rw,sync,no_root_squash,no_all_squash). For example,
add the following line to the file:
/modelstore 10.173.0.0/29 (rw,sync,no_root_squash,no_all_squash).

Procedure
1. Export the model store folder by using the following commands:

#>mkdir /modelstore
#vi /etc/exports
#>service nfs-server restart

2. Run the following commands:
sudo pip install flask
sudo pip install gevent
sudo pip install requests
sudo pip install pyinotify
sudo pip install opencv-python
sudo pip install lmdb
sudo apt-get install dos2unix

Registering the edge to the center application
After you configure the edge machine, you must register it in the center
application. You can create an edge or edit an existing one. Edges are used to run a
scoring model.

8 User Guide

Procedure
1. In the Model Manager, select My Data > Edges.
2. Select Create new edge and input the edge name.
3. Input the IP address, the SSH user name, and the password of the edge

machine. The IP address must be accessible to the center application. The SSH
user name and password are used to log in the edge machine to deploy the
edge controller. The SSH user must be a root user or have SUDO privileges.

4. In the Physical Hierarchy box, add the cell hierarchy to the profiles. The
hierarchy means that the edge covers those cells, and the images that are
captured on those cells are sent to the edge for scoring. You can select one of
the following combinations: plant, plant and line, or plant, line, and cell. If
you specify plant, all of the cells that are under the plant are covered. If you
specify plant and line, all of the cells that are under the plant and line are
covered. If one profile is not enough, you can add more profiles.

5. Select Ok to create the edge. If the IP address, SSH user name, or password is
not correct and an error message shows, make sure that the values are correct
and that the edge machine can be connected.

6. Select Create. The edge controller and score engine deploy to the edge
machine, and the edge is added into the registered list.

7. Perform an SSH login to the edge system.
8. Run the following command:

ps aux | grep python
The result should include the following Python process for the edge controller:
python controler.py.

9. If you do not find the Python process on the edge machine, there is an issue
with starting the edge controller. Check the log files deployment_folder/
vi_edge-bin_vi/vi_edge/nohup.out. Try to start edge controller by running
the following commands:
cd deployment_folder/vi_edge-bin_vi/vi_edge/
nohup python controler.py &

10. Run the following command again to look for Python processes for the score
engine:
ps aux | grep python
The result should include the following Python processes:
python
deployment_folder/vi_edge-bin_vi/vi_score_engine_restful/model
/run.py 2001 0
python
deployment_folder/vi_edge-bin_vi/vi_score_engine_restful/model
/run.py 2002 0
python
deployment_folder/vi_edge-bin_vi/vi_score_engine_restful/route
/run.py 5005 2001 2002.

11. If you do not find these Python processes on the edge machine, there is an
issue with starting the score engine. Check the log files deployment_folder/
vi_edge-bin_vi/vi_score_engine_restful/route/log.txt and
deployment_folder/vi_edge-bin_vi/vi_score_engine_restful/model/log.txt.
Try to start the score engine by running the following command:
deployment_folder/vi_edge-bin_vi/vi_score_engine_restful/startEngine.sh

12. Run the following command again to look for Python processes for the score
engine for Faster-RCNN and SSD:
ps aux | grep python

Chapter 2. Creating edge systems 9

The result should include the following Python processes:
python run.py 5060 1 FRCNN
python run.py 5061 1 SSD

13. If you do not find these Python processes on the edge machine, there is an
issue with starting the score engine. Check for the frcnn_log.txt and
ssd_log.txt log files in deployment_folder/vi_edge-bin_vi/
vi_obj_detection/RESTAPI/model. Try to start the score engine by running the
following command:
cd deployment_folder/vi_edge-bin_vi/vi_obj_detection/RESTAPI/model
nohup python run.py 5060 1 FRCNN > frcnn_log.txt 2>&1 &
nohup python run.py 5061 1 SSD > ssd_log.txt 2>&1 &

10 User Guide

Chapter 3. Creating and using models

You create models to collect historical images and defect information. The
information is sent to the center application and used to train the model. After the
model is trained, it is distributed to edges so that it can be inspected.The
information is used to train the model. After the model is trained, it must be
validated before it is deployed to an edge. Validating the model provides model
accuracy information. There can be multiple versions of a model. Models can share
defect information but have different image files from different product lines. You
can retrain a model to attempt to get a higher model accuracy so that the model
version can be replaced with a newer model version. There are two types of
models implementations, the classification model and the object detection model.
The object detection model does not support retrain.

Structure of compressed image files
Before you add historical images for image groups, you must have files that
contain the image files that you need for either the classification model or the
object detection model.

Classification model

Add the images into compressed files. One compressed file must contain all of the
images that belong to the same image group. You must put all of the images in a
flat structure with no subfolders in the compressed file.

Object detection model

The structure for the object detection model must contain two compressed folders
in one compressed file. One folder must be named JPEGImages and the other must
be named Annotations. In addition to the two folders, the compressed file must
also contain a labels.txt file.

Add all of the image files to the JPEGImages folder. Add all of the annotations files
to the Annotations folder. An annotation file must have the same file name as it's
image file. The files must be in XML format. The following information is an
example of an annotation file:
<annotation>

<folder>JPEGImages</folder>
<filename>000001.jpg</filename>
<source>
<database>Unknown</database>

</source>
<size>
<width>864</width>
<height>1296</height>
<depth>3</depth>

</size>
<segmented>0</segmented>
<object>
<name>defect1</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>

<xmin>474</xmin>

© Copyright IBM Corp. 2017 11

<ymin>368</ymin>
<xmax>540</xmax>
<ymax>448</ymax>

</bndbox>
</object>
<object>
<name>defect2</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>

<xmin>303</xmin>
<ymin>387</ymin>
<xmax>369</xmax>
<ymax>452</ymax>

</bndbox>
</object>

</annotation>

The labels.txt file contains the names of all of the defects types that are in the
compressed image folder. Each defect must be on a separate line, as shown in the
following example:
defect1
defect2
defect3

Adding historical images for image groups
The model manager can create image groups by using historical images to train the
model.

Procedure
1. Select Data > Image groups > New Image Group.
2. Add a unique image group name and description, select the image group type,

and select Next.
For the image group type, single characteristics means that all of the images
that are in the group have the same type of defect. For the single characteristics
group type, each image in the group has one defect. Multiple characteristics
means that all of the images that are in the group contain more than one defect.
For the multiple characteristics group type, the defect types can be the same or
different. For the image group type, not a defect means that the images in the
group do not contain defects.

Note: After the image set is uploaded, the image group type that you select
cannot be changed.

3. In the Image sets pane, add images and select Add Image Group.
4. In the Image groups pane, open the defect that you added and select Preview

to view the image files.

Results

In the Image groups pane, you can select an image group and select edit. You can
add or delete the image sets, update the image group name or description, or
change the image group type.

Note: If the image set is cited in a model instance, the image set cannot be deleted.

12 User Guide

Creating model requests
After the defect types are added, the model manager creates a model request. The
model request is submitted to send the model to a data scientist. The data scientist
trains the model.

About this task

You view the details of a model on the All Models tab. The model details include
the versions of the model. Different model versions are built by different image
sets.

The model name and the product type are unique. You cannot use existing model
names and product types when you create a new model. However, the same
model name can exist in two separate lists to represent a different version of the
same model. After the new model is distributed to the edges, the older version of
the model is replaced.

Procedure
1. Select Create New Model.
2. On the General tab, update the information. The product type is used to map

the model. The edge controller selects the model based on the product type
information that is on the image.

3. On the Global Policies tab, set the retrain policy and the manual inspection
policy settings. If you select auto retrain, the retraining is automatically
triggered when the conditions are fulfilled. If you select manual retrain you can
select the confidence level for the model manager to manually retrain.

4. On the Add Defects tab, select the image sets that you want to use to train the
model and select Done. The model version status is set to Draft.

5. In the All Models pane, view the model. If the model version status is set to
Draft, you can select an image group and edit.

6. Select Request training. The status of the model version changes from Draft to
Submitted.

Trained models
The data scientist trains the model by using the model description and the image
sets. The model manager validates the model and either accepts or rejects the
trained model. The model manager validates the model by using validation image
sets.

It is recommended that the data scientist use the NVIDIA development tool to
train the model. The data scientist packages the output of the Caffe model and the
parameter files and sends the compressed file to the model manager. The model
manager selects the model and attaches the compressed file. After the compressed
file is uploaded, the model status is changed to Trained.

Structure of model files
Visual Insights supports the convolutional neural network (CNN) classification and
object detection model types.

CNN classification models
The CNN classification model must be a single compressed file and contain the
correct directory structure and files.

Chapter 3. Creating and using models 13

The compressed model file

The compressed model file must contain the following directories and files.
v model.config (file, required)
v sink.config (file, required)
v parameter.config (file, optional)
v cnet (directory). The cnet directory must contain the following files:

– labels.txt (file, required)
– deploy.prototxt (file, required)
– mean.binaryproto (file, required)
– info.json (file, required)
– snapshot.caffemodel (file, required)
– solver.prototxt (file, required)
– train_val.prototxt (file, required)

Each file must have the correct structure and keywords. The files are described in
the following sections.

model.config

The following text is an example of the contents of the model.config file.
Keywords are shown in bold text.
submodel{

module {
type:"ChipROIExtractor"
ref_file:"parameter.config"

}
module {

type:"ClassificationNet"
net_name:"cnet"

}
}
sink{

type:"SinkFilter"
ref_file:"sink.config"

}

This file must have at least one module that has the ClassificationNet type in the
submodel. The ref_file keyword points to the other configuration files within the
CNN classification model compressed file. The net_name keyword refers to the
folder name that contains the CNN model. You do not need to change the sink
information unless you have a different name for the sink.config file.

sink.config

The contents of the sink.config file are as follows. You do not need to edit the
contents.
keyword:"position"
keyword:"probableTypes"

labels.txt

The labels.txt file contains all the class names with which this classification
model is classified. Each class name must be on a separate line, as shown in the
following example.

14 User Guide

defect1
defect2
defect3

info.json

The info.json file holds all of the metadata information of the CNN model. All of
the file names must match the file names that are included in this model.
Keywords in the following example file are shown in bold text.
{

"caffe flavor": "BVLC",
"caffe version": "1.0.0-rc5",
"creation time": "2017-05-02 16:26:18.957631",
"dataset_id": "20170502-162536-2027",
"deploy file": "deploy.prototxt",
"digits version": "4.1-dev",
"framework": "caffe",
"id": "20170502-162618-b701",
"image dimensions": [

227,
227,
3

],
"image resize mode": "squash",
"job id": "20170502-162618-b701",
"labels file": "labels.txt",
"mean file": "mean.binaryproto",
"model file": "original.prototxt",
"name": "C_3_227_227",
"snapshot file": "snapshot_iter_138.caffemodel",
"solver file": "solver.prototxt",
"status": "Aborted",
"train_val file": "train_val.prototxt",
"username": "coco"

}

Other files

All filename.prototxt files are model definition files that are required when you
train a CNN model.

The snapshot.caffemodel and mean.binaryproto files are output files that are
created after the model training is complete.

Object detection model
The object detection model must be a single compressed file and contain the
correct directory structure and files. The following object detection algorithms are
supported: You Only Look Once (YOLO) V2, faster region-based convolutional
neural network (Faster R-CNN), and single shot multibox detector (SSD).

YOLO V2:

The YOLO V2 object detection model must be a single compressed file and contain
the correct directory structure and files.

Compressed model file

The compressed model file must contain the following files:
v labels.txt

v model.config

Chapter 3. Creating and using models 15

v yolo_final.weights

v Yolo.cfg

Each file must have the correct structure and keywords. The files are described in
the following sections.

labels.txt

The labels.txt file contains the names of all of the objects that this object
detection model detects. Each object must be on a separate line, as shown in the
following example.
defect1
defect2
defect3

model.config

Keywords in the following example are shown in bold text:
{

"modelType": "YOLO",
"modelCfg": "Yolo.cfg",
"model": " yolo_final.weights",
"parameters": {

"iteration": "40000",
"batchSize": 16,
"learningRate": 0.001,
"subBatchSize": 2,
"steps": "100, 15000, 25000,35000",
"scales": "-1,10, 0.1, 0.1"

}
}

The value of modelType is always YOLO. The value of modelCfg is the name of
the deep learning network definition file. The value of model is the name of the
actual model file. The values in parameters are hyper-parameters of the YOLO V2
model.

yolo_final.weights

This file contains the output after the YOLO model is trained. The file name must
match the definition of model in model.config.

Yolo.cfg

This model definition file includes network definitions, hyper-parameters, and
anchor settings. A template of this file can be found in the darknet/cfg/ YOLO
installation directory. This file must match the weights file.

Faster R-CNN:

The Faster R-CNN object detection model must be a single compressed file and
contain the correct directory structure and files.

Compressed model file

The compressed model file must contain all of the following files:
v labels.txt

16 User Guide

v faster_rcnn_final.caffemodel

v model.config

v stage1_fast_rcnn_solver30k40k.pt

v stage1_fast_rcnn_train.pt

v stage1_rpn_solver60k80k.pt

v stage1_rpn_train.pt

v stage2_fast_rcnn_solver30k40k.pt

v stage2_fast_rcnn_train.pt

v stage2_rpn_solver60k80k.pt

v stage2_rpn_train.pt

v faster_rcnn_test.pt

Each file must have the correct structure and keywords. The files are described in
the following sections.

labels.txt

The labels.txt file contains the names of all of the objects that this object
detection model detects. Each object must be on a separate line, as shown in the
following example.
defect1
defect2
defect3

faster_rcnn_final.caffemodel

This file contains the output after the Faster R-CNN model is trained. The file
name must match the definition of model in model.config.

model.config

Keywords in the following example are shown in bold text:
{

"modelType": "FRCNN",
"model": " faster_rcnn_final.caffemodel",
"solvers": "stage1_rpn_solver60k80k.pt,stage1_fast_rcnn_solver30k40k.pt,
stage2_rpn_solver60k80k.pt,stage2_fast_rcnn_solver30k40k.pt",
"net_file": "stage1_rpn_train.pt,stage1_fast_rcnn_train.pt,
stage2_rpn_train.pt,stage2_fast_rcnn_train.pt",
"deploy_net": "faster_rcnn_test.pt",
"parameters": {

"iteration": "40000,80000,40000,80000",
"learningRate": 0.001,
"stepsize": "10000",
"gamma": "0.1"

}
}

The value of modelType is always FRCNN. The value of model is the name of the
model file. The value of solvers is the list of solver files that are used during model
training. The value of net_file is the list of network definition files. The value of
deploy_net is the name of the scoring network definition. The values in parameters
are all hyper-parameters of the Faster R-CNN model.

Chapter 3. Creating and using models 17

*.pt files

The files with the .pt extension are model definition files. The pascol_voc model
that is provided by Faster R-CNN is supported. The template file can be found in
the models/pascal_voc/netname/faster_rcnn_alt_opt/ Faster R-CNN installation
directory, where netname is ZF or VGG16.

SSD:

The SSD (Single Shot MultiBox Detector) object detection model must be a single
compressed file and contain the correct directory structure and files.

Compressed model file

The compressed model file must contain all of the following files:
v labels.txt

v solver.prototxt

v deploy.prototxt

v model.config

v SSD.caffemodel

Each file must have the correct structure and keywords. The files are described in
the following sections.

labels.txt

The labels.txt file contains the names of all of the objects that this object
detection model detects. Each object must be on a separate line, as shown in the
following example.
defect1
defect2
defect3

solver.prototxt

This file contains all hyper-parameters for the SSD model.

deploy.prototxt

This file contains the network definition of the trained model.

model.config

Keywords in the following example are shown in bold text:
{

"modelType": "SSD",
"seldef_parameters": {

"TestRatio": 0.3,
"Train_batch_size": 8,
"Validation_batch_size": 8

}
}

The value of modelType is always SSD. The values of seldef_parameters are
parameters that are used for training and validation.

18 User Guide

SSD.caffemodel

This file contains the output after the SSD model is trained.

Validated models
The model manager validates the model version and either accepts or rejects the
trained model. The model manager validates the model by using validation image
sets. After a model is validated, it can be used and deployed.

You can validate a model version that has a status of Trained. A trained or
retrained model version can trigger the validation process. When you validate a
report, you must manage the image sets. Every image group must have at least
one validation image set to validate the model. You must use different image sets
and training image sets to validate the model version. To begin the validation
process, select Validate.

After the validation process is finished, a report is generated that shows the model
accuracy. You can create the following types of reports:

Classification model report
In the classification model report, one image has one defect at most. The
confusion matrix is used to generate the report where each column
represents one real image group type in the validation data sets. Each row
represents the predicted image group type. The last row in the chart
represents the aggregate results.

Object detection model report
In the object detection model report, one image has multiple defects. In
this report, the mean average precision and the recall are calculated to
indicate the model accuracy.

To view the report, select Show Report. From the Validation Report window, you
can revalidate, reject, or accept and deploy the report.

If the first model version is rejected, you can attach a new model file. If a model
version that is not the first version is rejected, the model manager can retrain a
new model version.

Distributing trained models to edges
After the model manager accepts the trained model version, the model is
distributed to edges so that it can be inspected.

Procedure
1. Select a model version with a status of Accepted. Select Deploy.
2. Select the plant, line, or cell filter to search for edges that the model will deploy

on.
3. Select the edges from the Candidate List and move them to the Selected List.
4. Select Deploy.

Chapter 3. Creating and using models 19

Retraining models
When you retrain a model, a new model version is created. When you create a
model request, you define the retrain policy. The retrain policy is the condition that
triggers auto-retrain. If there is concern about the current model accuracy, the
model manager can manually select the image files to trigger the retrain process.

Procedure
1. Select a model version that has a status of Deployed and select Retrain.
2. Manage the image sets. Every image group must have at least one retrain

image set to retrain the model.

Note: You must use different image sets to retrain the model version.
3. Select Retrain to begin the retrain process.

What to do next

The model manager validates if the retrained model is accepted. The model
manager can deploy the new version, and the old model version is no longer
deployed.

20 User Guide

Chapter 4. Checking inspection results

After the inspection results are sent to the center application, the inspector and the
inspector supervisor can go to the Defect Check tab to view and filter the
inspection results and make any necessary changes.

Images
The inspector and the inspector supervisor can view images to see if they are
classified as existing defects or not, and to find out if someone else checked the
images. Viewing the images determines what the inspector or supervisor must do
when they check the defects.

The inspector views unchecked and checked images. Unchecked images mean that
the image was only scored by the model and was not checked by an inspector.
Checked images mean that the image was scored by the model and was already
checked by an inspector.

The inspector views unconfirmed and confirmed images. Unconfirmed images
mean that the image was only scored by the model and was not confirmed by an
inspector. Confirmed images mean that the image was scored by the model and
was confirmed by an inspector.

The inspector supervisor can view objects and unknown objects. Unknown objects
mean that the image was marked by an inspector as an unknown defect because
the inspector did not classify the image as an existing defect. These images are
highlighted on the inspector supervisor’s list.

Filtering defects
The inspector and the inspector supervisor can apply filters to the cell overview
and the defect list.

Procedure
1. On the All Workstations window, select a workstation to view the list of

unconfirmed, confirmed, and unknown objects.
2. Select the filter icon.
3. Input a value for a condition to set the filter and then select the add icon. The

filter applies to the list immediately.

Checking defects
The inspector and inspector supervisor review the inspection results and make any
necessary changes.

About this task

When you select an image, the defect candidate and corresponding confidence
display. The first defect is selected by default. The inspector can select unknown
for a defect type if the defect type is unknown.

© Copyright IBM Corp. 2017 21

Procedure
1. Select an image to view the image details and inspection results.
2. Select Edit Zoom to zoom in and out of the image or drag the image to locate a

position.
3. Select Set Zoom to change back to edit mode. You can add, resize, move, and

view the details of a defect box.
4. Select the defect box that you want to confirm and view the details of the

defect type and confidence level. You can change the defect type or delete the
position.

5. Select Confirm.
6. If the image does not belong to any existing defects, the inspector supervisor

can create a new image group. The new defect is added into the candidate list
for images that are under the same model.

22 User Guide

Chapter 5. KPI dashboard

An inspector supervisor uses the KPI dashboard to help manage all of the
inspectors. The inspector supervisor also uses the KPI dashboard to check the
image level defect rate and the location level defect rate. These metrics can help
provide information so that you can ask the IT team to retrain the model or adjust
the manufacturing procedure.

The KPI dashboard is on the KPI tab. You can select all workstations or a specific
workstation. This selection impacts the scope that you are working on. You can
also switch between real-time and historical views. In the real-time view, KPI data
is refreshed every 5 seconds. The KPI values include defect per unit and defect
rate. The defect per unit is calculated as a specific defect number divided by the
total image number. The defect per unit value represents the occurrence rate of a
defect type. The defect rate is calculated as the number of images with one or
more defects divided by the total image number. The defect rate represents the
product defect rate. Each line in the chart represents the KPI value in the current
5-second interval. The historical view shows historical KPI data. You can edit the
start date and end date to determine the time range. KPIs in the historical view
include defect per unit and defect rate.

The historical view has three granularities: hourly, daily, and monthly. In the
hourly chart, each point represents 1 hour. For example, a KPI value that is 24
points represents 24 hours. In the daily chart, each point represents one day. For
example, a KPI value that is 30 points represents 30 days. In the monthly chart,
each point represents one month. For example, a KPI value that is 12 points
represents 12 months. There are relationships between the selected time range and
granularity. If there are too many points in a granularity for a selected time range,
then that granularity is disabled until you shorten the time range. If you want to
refresh the chart, you can change time range or click Refresh. The historical KPI
data is calculated periodically by the server, so there is some time delay based on
the configuration. The default period to calculate historical KPI is 1 hour.

By default, only the top five defects types are displayed in the Defect Per Unit
chart. If you want to check other defect types, you can select one or more defect
types under the chart and then click Show trend. A new KPI chart displays the
selected defect types. If the KPI value of a defect type is 0, it cannot be selected to
show a trend.

© Copyright IBM Corp. 2017 23

24 User Guide

Notices

This information was developed for products and services offered in the US. This
material might be available from IBM in other languages. However, you may be
required to own a copy of the product or product version in that language in order
to access it.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may
not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those

© Copyright IBM Corp. 2017 25

websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

The performance data and client examples cited are presented for illustrative
purposes only. Actual performance results may vary depending on specific
configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample

26 User Guide

programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at "Copyright and
trademark information" at www.ibm.com/legal/copytrade.shtml.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux is a trademark of Linus Torvalds in the United States, other countries, or
both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following
terms and conditions.

Applicability

These terms and conditions are in addition to any terms of use for the IBM
website.

Personal use

You may reproduce these publications for your personal, noncommercial use
provided that all proprietary notices are preserved. You may not distribute, display
or make derivative work of these publications, or any portion thereof, without the
express consent of IBM.

Commercial use

You may reproduce, distribute and display these publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make
derivative works of these publications, or reproduce, distribute or display these
publications or any portion thereof outside your enterprise, without the express
consent of IBM.

Rights

Except as expressly granted in this permission, no other permissions, licenses or
rights are granted, either express or implied, to the publications or any
information, data, software or other intellectual property contained therein.

Notices 27

http://www.ibm.com/legal/us/en/copytrade.shtml

IBM reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the publications is detrimental to its interest or, as
determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full
compliance with all applicable laws and regulations, including all United States
export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use
session and persistent cookies that collect each user’s name, user name, password,
or other personally identifiable information for purposes of session management,
authentication, single sign-on configuration or other usage tracking or functional
purposes. These cookies can be disabled, but disabling them will also likely
eliminate the functionality they enable.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM’s Privacy Policy at http://www.ibm.com/privacy and
IBM's Online Privacy Statement at http://www.ibm.com/privacy/details in the
section entitled “Cookies, Web Beacons and Other Technologies” and the "IBM
Software Products and Software-as-a-Service Privacy Statement" at
http://www.ibm.com/software/info/product-privacy.

28 User Guide

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/privacy/details
http://www.ibm.com/privacy/details

Notices 29

IBM®

Printed in USA

	Contents
	Chapter 1. Product overview
	Roles
	How is data backed up and restored?
	What's new in this release
	Accessibility features

	Chapter 2. Creating edge systems
	Edge system requirements
	Installing NVIDIA GPU packages
	Installing Caffe
	Troubleshooting the Caffe installation
	Installing Open CV
	Installing object detection libraries
	Configuring the image server
	Configuring the model store
	Registering the edge to the center application

	Chapter 3. Creating and using models
	Structure of compressed image files
	Adding historical images for image groups
	Creating model requests
	Trained models
	Structure of model files
	CNN classification models
	Object detection model

	Validated models
	Distributing trained models to edges
	Retraining models

	Chapter 4. Checking inspection results
	Images
	Filtering defects
	Checking defects

	Chapter 5. KPI dashboard

